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Abstract. Analytical and numerical investigations are canied out to reveal the frequency 
and magnetizationorientationdependennsoftheconductivity tensorcomponents. Analysis 
of the perturbatively obtained expressions show that the peculiarities of the tensor com- 
ponentathatareeven in magnetizationare immediately related with the spin-fliptransitions. 
The corresponding identificationofthe peculiaritiesof the orientation magneto-optical Kerr 
effect can allow one to extract the magnitude of an exchange splitting from experimental 
data. The results of application to Ni are prmented. 

1. Introduction 

Recent first-principles calculations [1,2] of the magnetocrystalline anisotropy energy 
of ferromagnetic metals indicate the need for further investigation of the effect of 
magnetization orientation on electronic properties. It can be assumed that the existing 
disagreement between theory and experiment as regards the energy changes resulting 
from changes in the direction of magnetization is due to insufficient accuracy of the 
present methods, which serve as a basis of numerical band calculations. In crystals with 
high symmetry, the effect of the magnetic anisotropy on total electron energy is of rather 
high order in the magnetization and relativistic terms compared with such phenomena 
as magneto-optical effects [3]. Furthermore, the effects of lattice distortion caused by 
magnetostriction andother similar effects, which are also connected with relativity, may 
prove to be useful in describing magnetic anisotropy energetics. 

Probably, one of the most suitable macroscopic quantities is the optical conductivity 
tensor, which is not strongly sensitive to the accuracy of the present methods and by 
which the usual optical and magneto-optical properties are described. In general, the 
dissipation of light in a ferromagnet is described by both the diagonal and non-diagonal 
components of the conductivity tensor u,p(w) (see e.g. [3]) and depends on the mag- 
netization (M) orientation. 

In this paper the manifestation of the orientation effect in magneto-optics is inves- 
tigated by the perturbation method with both the exchange splitting and spin-orbit (so) 
coupling considered on an equal footing. An expression for the component of the tensor 
including only odd powers of the magnetization was first obtained by Argyres [4] for the 
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direction M 11 [00 11. The case of arbitrary orientation of M and both odd and even M 
components of the tensor in question are the subjects considered in the present paper. 

The present paper is organizedasfollows. InsectionZashort review ofthe theoretical 
results on optics and magneto-optics is presented. Section 3 contains the perturbative 
expressions for the conductivity tensor obtained in the framework of the local spin- 
dens i tyapproximat ion(s~~) .  On the basisofthese expressions, theangleand frequency 
dependences of both odd and even M components of um,,(w) are analysed. The relations 
between the conductivity tensor components and macroscopic magneto-optical effects 
for arbitrary magnetization direction are considered in section 3. Section 5 is devoted to 
the numerical calculations of the optical and magneto-optical characteristics of Ni (FCC) 
for different orientations of M. These calculations confirm the general expressions 
obtained perturbatively and allow comparison with the experimental data. Finally, in 
section 6, the concluding remarks and a summary are presented. 

2. Conductivity tensor and light dissipation 

Let us concentrate on those components of the conductivity tensor that describe light 
dissipation in a ferromagnet for a given orientation ofM. What gives a contribution to 
light dissipation in conventional optics is, as is well known, Re u,,(w) for an arbitrary 
direction of 11.1. Further, only the non-diagonal tensor components will be considered, 
with the exception of special cases. 

Generally, tensor u*@(ll(w) can be divided into two contributions, 
o&(w) and u : ~ ( w ) ,  which contain the odd and even powers of M, respectively: 

u,p(w) = l[o,ii(w) + ua.(w)J + I [ U 0 B ( W )  - JJg.(w)I = u',a(w) + C p ( W ) .  (1) 
In equation (l), us,B(w) is symmetric and u&-(w) is antisymmetric with respect to the 
transposition x * y .  The contribution of the non-diagonal tensor components to light 
dissipation can be written in terms of the electric field complex intensity E as follows: 

Q = (1/4n){EaD/Jt) = t  Re4(uik(E:Ek) + uu(EIEi)) 
k f ,  

= [t  &(U, + ax,) Re(E:Ek) + & Im(Uki - UIk) Im(E:Ek)]. (2) 
k f r  

This means that light dissipation for an arbitrary orientation of M is described by the 
antisymmetric (with respect to CY u p )  component 1 Im(upe - ump) responsible for the 
linear magneto-optical effects and symmetric component g Re(ueB + u6J responsible 
for even magneto-optical effects. 

The formulae for antisymmetric and symmetric tensor components can be easily 
derived from the general expressions based on Kubo's [5] formula for linear response: 

(3) 
xe 

Imu:p(W) = - Z b(hw - ~,.r(k))fu(fu -L) ~ ? ( k ) j j Y ( k ) l  

and the Same expression for Re O ~ ~ ( W )  is obtained by substitution Im u Re in formula 
(3). The notations in equation (3) are asfollows: j i t ( k )  are the current densityoperator 
matrix elements 

I r lA'  

j"k.'(k) = (e/m)(Ilt&, + (eh/4mcz)[u x v y ( r ) l l ~ d  (4) 
A is theelectron state. E,.n = Eu - Eutandfuis the Fermi-Diracfunction.Toevaluate 
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expression (3), eigenstates and wavefunctions were derived from the KohnSham 
equation including relativistic effects in first order of U'/.' and the Zeeman term for 
arbitrary magnetization orientation: 

[-(az/2m)V2 + + hso + hzml%(r) = EkLV'U (5 )  
where v(r) is the Hartree, electron-nuclear Coulomb and exchangecorrelation con- 
tributions to the effective one-particle potential, h, and h,, are spin-orbit and Zeeman 
terms respectively: 

h, = At+)$ = Av(r) 

Excis theexchange<orrelationenergy,p,are thediagonalelementsofthedensitymatrix 
0, U denotes the Pauli matrices, lis the angular momentum operator, and 6 is the oz 
Pauli matrix rotated by the spin-1/2 rotation matrix diagonalizing the density matrix 
(see e.g. [6]). Potential magnetic and spin-orbit parameters are A V  and E(r), respect- 
ively. The orientation of the magnetization with respect to the crystallographic axes is 
set up by the spherical angles 8 , ~ .  Numerical integration of equation (5) was performed 
self-consistently by the linear muffin-tin orbitals (LMTO) method [7], which includes 
combined correction terms. 

Some remarks concerning the numerical integration over k in equation (3) should 
be made. To integrate over the irreducible part of the Brillouin zone (IBZ), the following 
condition should be taken into account: 

where 2 are the elements of the magnetic point group, Ng is the group order andf(k) is 
the integrand. 

3. Perturbative expressions for tensor components 

It can be useful to obtain the obvious frequency-dependent expressions with the 
extracted orientational dependence to analyse and treat the frequency behaviour and 
peculiarities of the tensor non-diagonal components versus the magnetization orien- 
tation.Theperturbativederivationoftheseexpressionsisihepoint atissueofthepresent 
section. 

The perturbative wavefunction can be written in the second order of h,, in the usual 
way: 
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where {I$ is the spinor ( y  and s are the band and spin indices, respectively) obeying 
equation (5) with h, omitted. The spinors $; can be derived in the first order of h,, 
from the corresponding secular equation as the linear combination of the spin-restricted 
and non-relativistic wavefunctions pl; (spinors @;): 

The one-particle energy spectrum does not depend on the magnetization orientation in 
the first order of h., and hso; 

E,  = E: + (@,slkzml@,~) + (eys lhso l@p~ 

= E ;  S(pl,lAvlply) s = l , 2 .  (10) 
Then the expressions in question can be obtained by the substitution of formulae (8)- 
(10) into equation (3) for Im u&(w) and Re o",a(w). To get clearer formulae for the 
tensor components considered, it is necessary to take into account the point-group 
restrictions on the terms that arise as a result of the above-mentioned substitution. 
For cubic crystals, such manipulations lead to the following final expressions for the 
antisymmetric (odd in M )  and symmetric (even in M )  non-diagonal tensor components: 

+ B$"'(k 0, QJP(fiw - E y ' o . y e ) f d f ~ ~  -fi+3)1 (12) 

where the spin-degenerate and non-relativistic wavefunctions are used for matrix 
elements, u(5) = 1 (2), 2 (1) denote the spin projection numbers, 
E, , , , ,  = E,&) - E&), and the expressions for 0 ,  Q?) and B$,"(k, 0, pl) 
are presented in the appendix. There are some simplifying assumptions, which result in 
the obtained formulae (11) and (12). These are the reality of the momentum matrix 
elements and imaginarity of the spin-orbit coupling matrix elements in the presence of 
space inversion. Moreover, the presence of fourth-order rotation axes 6,, !I,,, A4> is 
implied for the crystallographic point group to obtain equation (12) (such a situation is 
realizedforexample incubiccrystals). Expression (1l)isvalidforcrystalswitharbitrary 
symmetry including space inversion. It is obvious from equations (11) and (12) that 
Im and Re U$ are really antisymmetric and symmetric with respect to the trans- 
position x - y, respectively. ? 
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For cubic crystals the symmetric restrictions induced by the mirror operation aZ lead 
toasimpledependence oftheantisymmetriccomponent Im u&(w) on the magnetization 
orientation: 

Im u ~ [ ~ + ~ ( o )  ZY Im u;pl l(w) cos e. (13) 
It should be noted that the derived expression (11) for the antisymmetric tensor 

component Im u;y corresponds to the first order in (&o/l?up) of the series expansion, 
where &,and EA,. are the averaged spin-orbit splitting and distance between the nearest 
valence states, respectively. The formula (12) obtained for the symmetric tensor com- 
ponent Re U:, corresponds to the second order in (&o/EAA,) of the series expansion. At 
lowfrequencyw -&&,hybridization betweenthestatesduetothespin-orbitcoupling 
should be taken into account (see [SI, where the corresponding analytical expressions 
for 8, p = 0, i.e. for Mll[OO 11, are reproduced). Generally speaking, the discussed 
formulae (11) and (12) are invalid at w - &&. 

One of the most characteristic features of the tensor components in question consists 
of the difference between interband mechanisms forming antisymmetric and symmetric 
components. As follows from equation ( l l ) ,  the antisymmetric component Im ug(w) 
can be roughly represented as the difference between the interband spin-up and spin- 
down transitions. In contrast, the symmetric component Re u ; ~  is formed by the spin- 
flip transitions, as well as the usual interband transitions between the states with the 
same spin projections. 

It should be noted that the effective one-particle potential v(r)  used in the wave 
equation (5) is assumed to be spherical on each site. Such an assumption simplifies the 
calculations in question but leads to a well known problem concerning the sharp spin 
orientation degeneracy removal induced by the infinitely small magnetic field in the 
spherically symmetric electron system (see e.g. [9-11]). An additional simplification 
used for calculations consists of the independence of the spin rotation matrix at a point 
inside the given atomic sphere. Moreover, in the framework of the density-functional 
formalism, the spinors used in the perturbative expressions discussed have to be self- 
consistent. However, the perturbative expressions obtained above seem to be con- 
venient for magnetic systems with well localized magnetic moment in which the ampli- 
tude of the spontaneous magnetic moment is not practically dependent on the 
magnetization orientation. To avoid these difficulties, the natural anisotropic terms 
fixing the spin orientation in the absence of the magnetic field should be added to the 
Hamiltonian. For instance, the more realistic non-spherical effective potential can 
probably remove this problem, which however is beyond the scope of the present paper. 

In the small-magnetization limit the expression for Re U& can be reproduced as 
follows: 

Re u j ( o )  - sin(2p) sin2 eIa$[fYl(l - f , ,~ )S ( f iw  - E,-~,I) w 
-fy2(1 - f , * z ) H h W  - EV,2?2)1+ 4 W l U  -f,.,)Nhw - EY*2,I) 

-fy& - f , , , )Ww - Ey,lyZ)I}2= (14) 

Re uS,B(w) - c uIa$(e, Y)IfYl(1 -f,dWo - E,,l,l) 

- f d  - f y ' 2 ) W w  - Ev.2n)l 

+ b $ ; ( e , m Y l ( l  - f Y , 2 ) ~ ( f i w  - E ~ ~ ~ ~ ~ )  

XUY' 
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where the quantities UT', bn', c$ andd$ are of the order of (&,/EA~p)2. hence the 
symmetric tensor component can be represented as a sum of two contributions. One of 
them has peculiarities at the same frequencies as the antisymmetric component 
Im  U ; ~ ~ ~ I ] ( ~ ) ;  thesecond termofequation (15) hasasharpstructureat thosefrequencies 
corresponding to the electron spin-flip transitions. It should be noted that the diagonal 
tensor component has a non-vanishing contribution in the small-magnetization limit in 
contrast to the non-diagonal one. This contribution is due to the crystal anisotropy and 
is not related to the exchange splitting. 

The transitions of the spin-flip type can possess information about the exchange 
splittingof the electron states. 

4. Relations with the phenomenology 

One of the most observable and measurable phenomena immediately related with 
the conductivity tensor components is the magneto-optical Kerr effect in its various 
configurations. This effect can be briefly clarified in the framework of the reflection 
problem [12-151. Todescribe the reflectionproblem,some vectorsshould beintroduced: 
the normal to the sample surface unit vector q,  the normal to the light incidence plane 
vector s (s = sin y, y is the angle between the propagation direction and vector q) ,  the 
complex propagation vector n, which can be represented as a sum (q X s) + gq, where 
nz = g2 + s2, and magnetization unit vector b. The mutual position of these vectors 
determines the usual Ken effect configurations: (i) normal-incidence Ken effect with 
b = q,  when the propagation vector n is inclined along the magnetization direction; (ii) 
equatorial Kerr effect configuration (the case of propagation perpendicular to the 
direction of magnetization) with b = s/s; and (E) longitudinal Kerr effect configuration 
with b = (q  X s)/s. 

As is known, the relations between the electric vector amplitudes A,, A, of the 
incident light and R,, R ,  of the wave reflected from ferromagnets are described by the 
reflectivity matrix F: 

("1 - - (" 7.P j (As) 

R ,  TPS 'PP A ,  
where sand p denote the components that are normal and parallel to the incident plane, 
respectively. If the conductivity tensor is supposed to be a sum of isotropic 80 and 
anisotropic R parts, then obvious relations between the reflectivity matrix and con- 
ductivity tensor components can be extracted from Maxwell's equations and cor- 
responding boundaryconditions [16]. In accordance with these relations, the anisotropic 
effects lead to the corrections of the reflectivity matrix components r,, rsp* rps and rpp 
expressed in terms of K ~ ~ ,  K ~ ,  K~.. and respectively. The quantities K~ denote the 
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components of the tensor R in the reference frame based on the vectors s , p  = (no  x s)/ 
noandp' = (n6 x s)/no: 

K #  = (l/ij)ikj i.j = s, p ,  p' (16) 
where no = (q  x s) + goq is the refracted wave propagation vector, and n6 = (q x s) - 
goq is the vector obtained from the vector no by the mirror operation in the sample 
surface plane. Then for the reflected linearly polarized s (p) waves, the effects of the 
reflected light intensity change due to the magnetic anisotropy are expressed by the 
corrections 6r to r ,  discussed above: 

6, = 2 Re(Gr,;/r&) i = s,p (17) 
and the effects of the light polarization change (Kerr rotation angle cyK and ellipticity 
PK) are expressed by the non-diagonal terms: 

ru, = Re(rP/r!%) aP = -Re(rsp/rtp) 8, = Im(rps/r$) pp = -I m(r,/rk) (18) 
where r# are referred to the non-magnetic phase of the crystal: 

r2 = (cos Y - so)/(cos Y + go) 
The quantities that are usually measured in experiments are 6,(,,, mdP, and /3r(p). As 
shown by Krinchik er al[13, 171, there are quadratic in M magneto-optical reflection 
effects, which can be described by the difference of the light intensity chan'ge 
between equatorial and longitudinal Kerr configurations, i.e. by - 6;z.  The 
relations between orientation magneto-optical effect (OMOE) (6:# - 6Zz) and the 
dielectric tensor components can be presented as follows (for the case of linearly p- 
polarized incident light): 

rk = (na cos y - go)/(na cos y +go). 

where &(U) is the isotropic part of the dielectric tensor. In order to get more obvious 
relations between OMOE and dielectric tensor components and to allow comparison with 
experiment, it  will be useful to write equation (19) for some usual configurations in 
detail. 

(i) OMOE for the surface plane (00 l), corresponding to turning of b from [loo] to 
[0 101 directions: 

(20) KI!ool - [glol = (&[ IOOl  - & ~ O O I ) ( &  - sin2 y ) / E .  
P P  K P P  YY 

Here the superscript of sCB denotes the magnetization direction, at which the dielectric 
tensor has the form 

E, 0 

k W I =  [: Eyy :ry) (21) 

-&xY EYY 

(ii) OMOE for the surface plane (00 l), corresponding to turning of b from [ l  101 to 
[i IO] directions: 

4;01 - K l i l ~ l  P P  = 2 &XY i l lol(, - y ) /E .  (22) 

The dielectric tensor has the following form for b11[110]: 
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(iii) OMOE for the surface plane (1 lo), corresponding to turning of b from [110] to 
[ O O l ]  directions: 

KP,P i l ioi  - KP,P 10011 = ($;lo1 - E&w)(E - 2 sin2 Y ) / [ E ( E  - y)], (24) 
The presented general form of the dielectric tensor at a given magnetization direction 
with respect to the crystallographic axes has been easily obtained by the symmetric 
restrictions imposed by the Laue group of acorrespondingmagneticspace group [8, 181. 

At this point it is trivial to consider the frequency dependence of the even in M part 
of OMOE. Forexample,oMOEcorresponding to theconfigurations(i) and (iii) isdescribed 
by the difference between diagonal componentsof a dielectric tensor in accordance with 
equations (20) and (24), and in the case (ii) OMOE is described by the symmetric non- 
diagonal tensor component in accordance with equation (22). Hence the even in M 
effect in question has a similar frequency dependence as hand-made corrections to 
the conductivity tensor perturbatively obtained earlier at second order in so coupling 
(equation (12) in general or equations (14) and (15) for the small-magnetization limit). 
So the main interest in the frequency behaviour of OMOE consists of the peculiarities 
which are immediately related with the electron spin-flip transitions. 

5. Numerical LSDA calculations: application to nickel 

The numericalcalculationswere carriedout on the basisof equation (3)for the dissipative 
parts of the conductivity tensor uCp(w)); then the dispersive parts of the tensor are 
obtained from the KramersKronig dispersive relations. In a recent paper [8] a detailed 
analysis of the frequency dependence has been presented for diagonal and odd in M 
non-diagonal tensor components. So this section is devoted to the frequency behaviour 
of the even in M magneto-optical Kerr effects. To evaluate the frequency-dependent 
OMOE expressions(l9)for threeconfigurationsofthe mutualarrangement oftheincident 
light polarization plane and magnetization orientation discussed in the previoussection, 
the band states, one-electron wavefunctions, momentum matrix elements and finally 
the conductivity tensor components (21) and (23) have been calculated at M(l[OO 11 and 
MI1 [ 1 lo]. The integration over k in equation (3) has been performed by the tetrahedron 
method with 918 points in the 1/16th irreducible part of the Brillouin zone (IBZ) of 
Mll[OOl]and1836pointsinthe l/SthrezatMII[l lo]. Itwasassumedthatsuchakmesh 
is fine enough to get high accuracy at the light frequencies hw B is,, but it  seems to be 
rough at hw -&. when about 50000 points are needed to get suitable accuracy [SI. 
Because of the so hybridization effects between states with opposite spin projections, 
the perturbative expressions [11,12] can he considered as suitable only at hw > iw, 

The frequency dependence of OMOE at light energies 0 < hw < 1.5 eV are plotted 
on figure 1. In this range the calculated curves have a sharp peculiarity at ho - 0.6 eV. 
According to the perturbative analysis presented above, this peculiarity can be con- 
sidered asa result of the spin-fliptransitions, whichseem tooccur at the d-bandexchange 
splitting energy. In contrast to the prediction presentedin [14] there is significant even 
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6, .1OZ.plane(l10),MI1[110] 

(4 

0.50 
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0.00 0.50 1 .oo 1.50 
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. Figurel. FrequencydependenceofoMoEfOrNi. The 
curves (H) corresponding to the experiment [17] 0.00 ' ' ' ' ' ' ' ' 0.60 ~ 

' ' ' ' ' ' ' ' 1 ' .oo ' ' ' ' ' ' ' ' ' i.20 

Energy,eV are multiplied by 10. 

inMeffectintheplane(OOl)andMl~[lOO] withthesame orderofmagnitudeasinother 
configurations. It should be noted that there are more distinctions between calculated 
quantities and experimental ones than agreements. Numerical data corresponding to 
absolute zero exceed the experimental one obtained at T = 80 K by nearly one order of 
magnitude. I t  is evident that the calculated curves at hw > 0.8 eVshould be compressed 
on the energy scale to improve agreement with the frequency behaviour of the exper- 
imental curves. It is well known that such 'compression' isneeded for whole LSDA valence 
states with width exceeding the experimental one by nearly 40%. Experimental curves 
havetwomainpeculiaritiesathw - 0.3eVand-0.6eV.Thepeculiarityathw - 0.3 eV 
is typical for both diagonal and non-diagonal tensor components and its origin seems to 
be related with the interband transitions in those regions of k-space where the non- 
relativistic opposite spin projection bands crossing, as discussed in [SI. Probably 
the experimental peculiarity that corresponds to the spin-flip transitions occurs at 
fiw - 0.6eV. 
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Such disagreement between theory and experiment is rather a proof of the well 
known LSDA failure in the one-particle treatment of the properties of nickel (see e.g. 
[SI). Onecan hope that thisfailure for Ni isanexception ratherthan the rule. The results 
of similar investigations for Fe and CO will be presented elsewhere. 

6. Conclusions 

In the first and second order in so coupling we have perturbatively investigated the 
frequency dependence of both the odd and even in M components of the conductivity 
tensor for arbitrary orientations of the magnetization vector with respect to the crys- 
tallographic axes. The results of significant importance are the frequency peculiarities 
of the tensor symmetric components, which can be considered as a manifestation of 
the spin-flip transitions and can possess information about exchange splitting. For 
comparison with experimental data the corresponding numerical LSDA calculations 
have been carried out for the orientation magneto-optical Kerr effect at various light 
polarization and M configurations. The application of analytical and numerical treat- 
ments to NI shows how the magnitude of exchange splitting can be extracted from 
the corresponding experimental data. Such an approach allows one to get detailed 
information about the main electron characteristics from the frequency and M orien- 
tation dependence of the conductivity tensor components in magnetic metals and com- 
pounds. 
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Appendix 

Substituting equations (8) into (3) and keeping the terms of order (&,/Eu.)', the 
followingexpressionsfor the factorsA$,'(k, 8, q) and Bw,',"(k, 8, q) can be obtained 
after some symmetrical restrictions: 

(i) For n # p 
8, q) = sin(2q) sin2 8 

-. ~1 ~~~ ) 1 
E y o . m e E y ) o , m * s  Eyo.moEysm,m,o 

- 1 

x mm' z '[L;w,y,p;;*,y ,y  ( 
+ Lmm' .m' i .p z j* .u 'v  ( 

w# Eyo.m'oEyo.mo Eyo.m'.&yo.mo 
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and 

B$+"'k, e .  

Here U (6) = I (2), 2 (1) are the spin indices, the matrix elements for the non- 
diagonal tensor components are 

L y ' f  = (E~ , )my(5qm*y .  + (5~y)my(5L)m~v'  
pTcm'u E P x  my Py m'y + p ; ~ p y ' ~  

and for the diagonal components 

Lmy,"'f(e,  cp) I Lg~."'y' cosz QI sin' e + LyJ'"? sin2 cp sin2 e + L g y ~ " ' y '  cosz e 
S P y v . m ' f  

Thesecond termpresentingthesocontnbution to the momentumoperator inexpression 
(4) has been omitted in obtaining the perturbative expressions. It is quite justified by 
the obvious smallness of the ratio between the mentioned term and the term that arises 
due to the first order in SO perturbative correction to the wavefunction, which can 
roughly be estimated (.&M./4mc*)(l?,4~/&,) - IOb5. Even in comparison with the term 
that arises due to the second order in SO perturbative contribution to the wavefunction, 
the term in question is as small as (f?A~/4mcZ)(~w/&,,)2 - This is justified by the 
numerical calculations also. 

Lnpn'Y' + Lm%m'r' + L y . m ' y ' ,  
YY 
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